Thursday, Sep 24, 2020 | Last Update : 04:44 AM IST

183rd Day Of Lockdown

Maharashtra122438091634833015 Andhra Pradesh6317495518215410 Tamil Nadu5473374919718871 Karnataka5268764233778145 Uttar Pradesh3588932895945135 Delhi2492592133045014 West Bengal2283021989834421 Odisha184122149379763 Telangana1726081419301042 Bihar169856155824870 Assam159320129130578 Kerala13863398720554 Gujarat1247671051913337 Rajasthan116881972841352 Haryana113075908841177 Madhya Pradesh108167836182007 Punjab99930754092860 Chhatisgarh8618347653680 Jharkhand7267358543626 Jammu and Kashmir65026421151024 Uttarakhand4177729000501 Goa2875322726360 Puducherry2319118065467 Tripura2227215441245 Himachal Pradesh124387836125 Chandigarh102987411123 Manipur9010683859 Arunachal Pradesh7385540813 Nagaland5544445110 Meghalaya4733252838 Sikkim2447190529 Mizoram158510120
  Life   Health  15 Aug 2018  Here's how stress hormone prevents Leukemia

Here's how stress hormone prevents Leukemia

ANI
Published : Aug 15, 2018, 6:34 pm IST
Updated : Aug 15, 2018, 6:34 pm IST

This explains why the immune system fails to prevent leukemia from taking hold.

Cancer cells evade the anti-cancer activity of the human immune system by employing the human hormone cortisol.  (Photo: Pixabay)
 Cancer cells evade the anti-cancer activity of the human immune system by employing the human hormone cortisol. (Photo: Pixabay)

A human stress hormone called cortisol has been identified by scientists as a key factor behind when and why the immune system fails to prevent leukemia from taking hold.

The team led by Dr. Vadim Sumbayev, of the University's Medway School of Pharmacy, found for the first time that blood or bone marrow cancer - acute myeloid leukemia (AML) - cells evade the anti-cancer activity of the human immune system by employing the human hormone cortisol.

 

The study of the causes of AML - the most severe blood or bone marrow cancer, demonstrated that AML cells employ a unique pathway for the disease to progress, using functional systems of the human body to both support their survival and also reduce the anticancer activities of immune cells.

They do this by using cortisol to force the release of a protein, latrophilin 1. 

This, in turn, causes the secretion of another protein, galectin-9, which suppresses the body's natural anti-cancer immune mechanism.

Dr. Sumbayev's team, working with researchers from two German universities and the UK's Diamond Light Source facility, found that although healthy human white blood cells are not affected by cortisol, they become capable of releasing latrophilin 1 when the malignant transformation takes place.

 

Malignant AML cells then use cortisol to increase the release of latrophilin 1 so that they can use it to avoid the immune system.

Dr. Sumbayev said, "For the first time, we can identify a possible future pathway to develop an effective new therapy using the body's natural immune mechanisms. We have discovered a new fundamental biochemical mechanism within the human body that allows AML cells to employ physiological systems to survive and escape immune attack."

The study concluded that galectin-9, as well as a natural binding partner of latrophilin 1 - known as FLRT3 - which are both present in human blood plasma, are the most promising targets for future anti-AML immune therapy.

 

The full findings are present in the journal- Cellular and Molecular Immunology.

Tags: stress hormone, cortisol, cancer, leukemia