Best detector can’t find dark matter
The world’s most sensitive dark matter detector has failed to yield any trace of the elusive substance thought to account for more than four-fifths of the mass of the universe, even after 20 months of operation.
The Large Underground Xenon (LUX) dark matter experiment, which operates beneath a mile of rock at the Sanford Underground Research Facility in the Black Hills of South Dakota, has completed its silent search for the missing matter of the universe.
LUX’s sensitivity far exceeded the goals for the project, scientists said, but yielded no trace of a dark matter particle.
Its extreme sensitivity makes the team confident that if dark matter particles had interacted with the LUX’s xenon target, the detector would almost certainly have seen it.
That enables scientists to confidently eliminate many potential models for dark matter particles, offering critical guidance for the next generation of dark matter experiments.
“LUX has delivered the world’s best search sensitivity since its first run in 2013,” said Rick Gaitskell, professor at Brown University in the US.
“With this final result from the 2014 to 2016 search, the scientists of the LUX Collaboration have pushed the sensitivity of the instrument to a final performance level that is four times better than the original project goals,” Gaitskell said.
“It would have been marvellous if the improved sensitivity had also delivered a clear dark matter signal,” he said.
Dark matter is thought to account for more than four-fifths of the mass in the universe.
Scientists are confident of its existence because the effects of its gravity can be seen in the rotation of galaxies.